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Abstract—This study addresses the problem of inferring
users’ employment affiliation information from social activities.
It is motivated by the applications which need to monitoring
and analyzing the social activities of the employees from a given
company, especially their social tracks related to the work and
business. It definitely helps to better understand their needs
and opinions towards certain business area, so that the account
sales targeting these customers in the given company can adjust
the sales strategies accordingly.

Specifically, in this task we are given a snapshot of a social
network and some labeled social users who are the employees
of a given company. Our goal is to identify more users from
the same company. We formulate this problem as a task
of classifying nodes over a graph, and develop a Supervised
Label Propagation model. It naturally incorporates the rich
set of features for social activities, models the networking
effect by label propagation, and learns the feature weights so
that the labels are propagated to the right users. To validate
its effectiveness, we show our case studies on identifying the
employees of “China Telecom” and “China Unicom” from
Sina Weibo. The experimental results show that our method
significantly outperforms the compared baseline ones.

I. INTRODUCTION

With the proliferation of social media and portable de-

vices, people spend more and more time on social media

platforms, which attracts increasing studies on mining busi-

ness insights and actionable knowledge from social media.

However, most of these previous works only consider social

users as mass consumers, and focus on their tracks in

using consumer products. For example, [1] monitors the

experiences and sentiments of social users on consumer

products, and [2], [3] identify the trustful and influential

users for consumer product promotion.

Besides mass consumers, social users are often acting as

enterprise employees. As social media is penetrating into

their everyday work, there has occurred a shift on how

enterprise employees receive the business information. As

shown in Figure 1, in the past sales people were the main

information source of enterprise buyers. However, nowadays

enterprise customers turn to social media for business and

technical information much more frequently. Therefore, to

succeed in enterprise business we need to monitor what

the enterprise customers read, comment and retweet about

their business topics in social media. By summarizing these

customer tracks in social media, the sales team can better

plan the sales goals and strategies.

Figure 1. The Information Sources of Buyers.

To this end, the first task is to identify the employees of a

given company in social media. Thus, in this study we focus

on this problem of profiling users’ employment affiliations in

the context of social networks. Given a snapshot of a social

network and some labeled social users who (we already

know) are either employees or non-employees of a given

company1, our goal is to identify more social users from

the same company. Temporal change of user affiliation is

out of the scope of this study.

Figure 2. An Snapshot Example of Sina Weibo Social Networks.

Clearly, this problem can be formulated as a supervised

classification task for the nodes over a graph. However,

it is challenging in the following aspects. First, as shown

in Figure 2, the features we can use for classification are

based on the various types of social activities, including

following users, posting tweets, retweeting, commenting

1There are only a small amount of users who provide their affiliation
information when registration.
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tweets2, mentioning users in tweets, etc. We need a uniform

model, which can not only incorporate all these features but

also infer the contribution of each feature for classification

automatically. Second, we need to consider the networking

effect in social media for this task. Usually, the colleagues

from a company may follow each other, and discuss the

content related to their company in social media. Learning

the feature weights in the context of networks makes this

task more complicated.

Figure 3. The Homogeneous Graph of Users.

Since we only focus on the classification of users in

this study, we can simplify this heterogeneous graph to a

homogeneous graph, as shown in Figure 3, where only the

nodes of users remain and the interactive activities between

two users are summarized as the features on the edge

between them.

With this simple representation of social graph, we pro-

pose a framework of Supervised Label Propagation, SLP

for short. In this framework, the label of each node is the

weighted sum of its initial label information and the labels

of its neighbors. The degree that how much the label of a

node is affected by its neighbors is the function of their

corresponding features (depicting the social activities be-

tween each pair of neighbors) and the feature weights. These

weights can be learned in a proposed optimization problem

so that the class labels are more likely to propagate onto the

users working for the given company. We summarize the

contributions of this study as follows.

• To the best knowledge of ours, we are the first to

infer users’ affiliation on social networks, and formulate this

problem as a task of node classification over graph.

• We propose a supervised label propagation framework

to address this problem.

• To demonstrate the effectiveness of the proposed model

we use the data crawled from Sina Weibo and focus on

identifying the users from the two biggest Chinese telecom-

munication companies, namely “China Unicom” and “China

Telecom”. The results show the significant improvement of

the proposed method over the compared baseline methods.

The remainder of this paper is organized as follows. We

formulate the problem of User Affiliation Inferring on social

networks in Section II. Then, the label propagation process

is introduced in Section III. We present the Supervised

2In Chinese social media a comment to a tweet is only attached to the
targeted tweet, but does not appear in the timeline of the comment’s author.
Thus, we distinguish comments with tweets in this study.

Label Propagation model and the model learning method

in Section IV. Section V discusses the features we use to

summarize the social activities. Experimental studies are

presented in Section VI. Finally, we give out the related

work and conclude this paper in Section VII.

II. PROBLEM STATEMENT

Notions & Denotations. All the notions and denotations

used in this study are summarized in Table I. With these

symbols we can derive more interesting concepts. For ex-

ample, T (uj)∩R(ui) is the set of tweets which are posted

by uj and retweeted by ui, and T (uj) ∩ C(ui) is the set

of tweets which are posted by uj and commented by ui.

T (ui)−R̃(ui) is the set of tweets originally created by ui.

Table I
LIST OF SYMBOLS

U The set of users.
E The set of edges.
G A Sina Weibo social network, G = (U , E).
u A social media user.
i, j Index over users.

〈ui, uj〉 A directed edge means user ui follow user uj .
m A tweet.

I(ui) The followers of ui.
O(ui) The followees of ui.
N (ui) The neighbors of ui in social networks, includes both follow-

ers and followees. N (i) for short.
T (ui) Tweets posted by ui.
R(ui) Tweets retweeted by ui.
˜R(ui) Tweets retweeted by ui and whose original authors are not

ui.
C(ui) Tweets to which ui comments.
M(ui) Tweets which mention ui.

UL
P Set of labeled positive users.

UL
N Set of labeled negative users.

T L
P Set of labeled positive tweets.

T L
N Set of labeled negative tweets.
Pi Likelihood of ui belonging to the affiliation Ω.
P 0
i Label bias of ui.

σi Influence of ui.
rji Edge association over the edge from uj and ui.
ωji Label propagation strength from uj to ui, ωji = rji · σj .
W Matrix of label propagation strength , W = [ωij ].

Inferring User Affiliation. This study aims at discovering

the employees of a given company Ω in a social network.

Here, we are given a social network G = (U , E), the tweets

and comments posted by each user ui ∈ U . Also, we have a

small set of labeled users UL = UL
P ∪UL

N , where UL
P are the

employees of Ω and UL
N are not the employees of company

Ω. This small set of labels is provided by the users who

filled in their affiliation information when registration. With

these data, we aim to find more employees of Ω besides

those in UL
P .

In this task we will assign a real likelihood score Pi to

measure how likely that a user ui is an employee of Ω. The

bigger the likelihood score Pi is, the more likely that the

user ui belongs to Ω. Next, we will propose a model to

calculate it.
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III. LABEL PROPAGATION PROCESS

A. Label Propagation

Motivated by the observation that users with common

attributes are more likely to be friends [4], the framework

of label propagation [5] is adopted in this study. In this

framework, the label of a node is affected by not only its

local label information but also the labels of its neighbors.

P
[t+1]
i = (1− η)

∑
uj∈N (ui)

ωji · P [t]
j + ηP 0

i (1)

where 0 < η < 1, ωji is label propagation strength from uj

to ui, η is the restart probability of label information that Pi

jumps to its personal label bias P 0
i . The updates continue

until convergence. Let W = [ωij ], then the close form of �P :

�P = η[I − (1− η)WT ]−1 �P 0. (2)

B. Label Propagation Strength ωji

The label propagation strength ωji is jointly affected by

two factors, namely the influence σj of uj and the edge

association rji from uj to ui.

ωji = σj · rji (3)

1) Edge Association rji : According to [6], it can be

represented as follows,

rji =
f(�α · �xji)∑

l∈N (i)

f(�α · �xli)
, (4)

where �xji depicts the features on the interaction from uj

and ui, which is detailed in Section V-A. �α is the weight

vector on these features, and f(x) = 1
1+e−x .

2) Influence σj : Here, we try to model the influence

on attracting the working colleagues as her social friends.

Specifically, for the influence of node j we have

σj = g(�β · �yj) (5)

where �β is the weight vector on the feature vector �yj , and

the function g = 1
1+e−x is adopted here. Section V-B will

detail the features of �yj .

C. Label Bias P 0
i

P 0
i = h(�γ · �zi), (6)

where �zi denotes this set of features for label bias, which

is detailed in Section V-C. �γ is the weight vector on these

features, and h(x) = 1− e−x.

As we can see from the above, the final likelihood vector
�P is determined by the parameter vector �θ = [�α, �β,�γ]. Next,

we will show you how these parameters are learned based

on the labeled data.

IV. SUPERVISED LABEL PROPAGATION

A. Model Formulation

In order to infer parameters �θ = [�α, �β,�γ], we formulate

the following optimization problem with the labeled data

min J(�θ) =
∑
i∈UL

P

∑
j∈UL

N

S(Pj − Pi) + C · ||�θ||2, (7)

where S(x) = 1
1+e−μx , μ is empirically set to 500.0. C is

regularization parameter to control the model complexity3.

The intuition of Equation (7) is that we identity the

parameters such that the likelihood of the positive users is

larger than that of negative users as much as possible. We use

the gradient descent method to solve Equation (7). The main

challenge is how to compute
∂J(�θ)

∂�θ
= [∂J(

�θ)
∂�α , ∂J(�θ)

∂�β
, ∂J(�θ)

∂�γ ].

B. Model Learning

Let δji = Pj − Pi, αk denotes the k-th entity of �α, βp

denotes the p-th entity of �β and γq denotes the q-th entity

of �γ. Then we have:

∂J(�θ)
∂αk

=
∑

i∈UL
P

∑
j∈UL

N

∂S(Pj−Pi)
∂αk

+ 2C · αk

=
∑

i∈UL
P

∑
j∈UL

N

∂S(δji)
∂δji

(
∂Pj

∂αk
− ∂Pi

∂αk
) + 2C · αk

(8)

∂J(�θ)
∂βp

=
∑

i∈UL
P

∑
j∈UL

N

∂S(Pj−Pi)
∂βp

+ 2C · βp

=
∑

i∈UL
P

∑
j∈UL

N

∂S(δji)
∂δji

(
∂Pj

∂βp
− ∂Pi

∂βp
) + 2C · βp

(9)

∂J(�θ)
∂γq

=
∑

i∈UL
P

∑
j∈UL

N

∂S(Pj−Pi)
∂γq

+ 2C · γq

=
∑

i∈UL
P

∑
j∈UL

N

∂S(δji)
∂δji

(
∂Pj

∂γq
− ∂Pi

∂γq
) + 2C · γq

(10)
∂S(δji)
∂δji

is obvious, but ∂Pi

∂αk
, ∂Pi

∂βp
and ∂Pi

∂γq
is not so clear.

Let xk
ji denotes the k-th entity of �xji, y

p
i denotes the p-th

entity of �yi and zqi denotes the q-th entity of �zi. According

to the update rule in Equation (1), we have:

∂Pi

∂αk
= (1− η)

∑
j∈N (i)

[
∂ωji

∂αk
Pj + ωji

∂Pj

∂αk
] (11)

∂Pi

∂βp
= (1− η)

∑
j∈N (i)

[
∂ωji

∂βp
Pj + ωji

∂Pj

∂βp
] (12)

∂Pi

∂γq
= (1− η)

∑
j∈N (i)

ωji
∂Pj

∂γq
+ η

∂P 0
i

∂γq
(13)

In the above three equations we have
∂ωji
∂αk

= σj ·
∂rji
∂αk

σj ·
xk
jif
′(�α·�xji)

∑
l∈N(i)

f(�α·�xli)−f(�α·�xji)
∑

l∈N(i)
xk
lif
′(�α·�xli)

[
∑

l∈N(i) f(�α·�xli)]
2

(14)

3In this study we set C = 0.1 empirically since we found that the
proposed methods are not sensitive to C.
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∂ωji

∂βp
= rji ·

∂σj

∂βp
= rji · ypj · g′(�β · �yj) (15)

∂P 0
i

∂γq
= zqi · h′(�γ · �zi) (16)

With Equations (11) through (16) we can compute the

derivatives ∂Pi

∂αk
, ∂Pi

∂βp
and ∂Pi

∂γq
in an iterative process, as

shown in Algorithm 1. The convergence of this algorithm

is similar to those of the power-iteration [7]. After we get
∂ �P

∂�θ
, we can compute the gradient of J(�θ) by Equations (8)

through (10). Then, we can apply the gradient descent

method directly to minimize J(�θ).

Algorithm 1 Compute Gradient

Input: U = {ui}, W = [ωij ], �P , �P 0;

Output: ∂ �P

∂�θ
= [∂

�P
∂�α , ∂ �P

∂�β
, ∂ �P

∂�γ ];

1: initialize ∂Pi

∂�α

[0]
, ∂Pi

∂�β

[0]
and ∂Pi

∂�γ

[0]
, t = 0;

2: while ∂ �P

∂�θ
not converged do

3: for each ui, k, p, q do
4:

∂Pi

∂αk

[t+1]
= (1− η)

∑
j∈N (i)

[
∂ωji

∂αk
Pj + ωji

∂Pj

∂αk

[t]
];

5:
∂Pi

∂βp

[t+1]
= (1− η)

∑
j∈N (i)

[
∂ωji

∂βp
Pj + ωji

∂Pj

∂βp

[t]
];

6:
∂Pi
∂γq

[t+1]
= (1− η)

∑
j∈N (i)

ωji
∂Pj

∂γq

[t]
+ η

∂P 0
i

∂γq
;

7: end for
8: t = t+ 1;

9: end while
10: return ∂ �P

∂�θ
= [∂

�P
∂�α , ∂ �P

∂�β
, ∂ �P

∂�γ ];

C. Method Summary

Given all the features detailed in Section V, each iteration

of the learning process contains the two steps: 1) given the

current parameters settings {�α, �β,�γ}, compute �P iteratively

by the label propagation in Equation (1). 2) with the current
�P , optimize the parameters of {�α, �β,�γ} by the gradient

descent method, detailed in Section IV-B. These two steps

are conducted iteratively until �P becomes unchange. In our

experiments �P becomes stable in about 200 iterations.

V. FEATURES

A. Features �xji in Edge Association rji

We use social activities among users to portray the edge

association. There are four kinds of social activities in this

study: 1) follow activities; 2) retweet activities; 3) comment
activities; 4) mention activities. Beside social activities, the

content of interaction messages between users is important

for identify the affiliation of users. So extract the topic

information of the interaction messages between users.

To extract topics from interaction messages, we label two

sets of tweets manually: T L
P denotes the tweets related to

the given company (belong to topic T1), and T L
N denotes

the tweets irrelevant to the company (belong to topic T2).

Then we adopt supervised PLSA to estimate the probability

values of P (T1|t) and P (T2|t) for any tweet t. Next, for any

tweet set T , we give a score to measure how much content

in this set is related to the given company:

H(T ) =
∑
t∈T

P (T1|t). (17)

The feature of rji is separated into two parts, �xji =

[�aji,�bji]. �aji considers the association if uj is the followee

of ui, and �aji = �0 if uj is not the followee of ui. Meanwhile,
�bji considers the association if uj is the follower of ui,

and �bji = �0 if uj is the not follower of ui. It is not

difficult to understand the follow equations with the symbols

summarized in Table I.
1) The computing of �aji when uj is the followee of �ui:

We have the following 4 features. alji denotes the l-th entry

in �aji, where l = 1, 2, 3, 4.

• The follow activity: a1ji =
1

||O(ui)|| .

• The retweet activity: a2ji =
H(R(ui)∩T (uj))∑

ue∈O(ui)

H(R(ui)∩T (ue))
.

• The comment activity: a3ji =
H(C(ui)∩T (uj))∑

ue∈O(ui)

H(C(ui)∩T (ue))
.

• The mention activity:

a4
ji =

H(T (ui) ∩M(uj) ∪ T (uj) ∩M(ui))∑
ue∈I(ui)

H(T (ui) ∩M(ue) ∪ T (ue) ∩M(ui))
.

2) The computing of �bji when uj is the follower of ui:
We also have the following 4 features. blji denotes the l-th

entry in �bji, where l = 1, 2, 3, 4.

• The follow activity: b1ji =
1

||I(ui)|| .

• The retweet activity: b2ji =
H(R(uj)∩T (ui))∑

ue∈I(ui)

H(R(ue)∩T (ui))
.

• The comment activity: b3ji =
H(C(uj)∩T (ui))∑

ue∈I(ui)

H(C(ue)∩T (ui))
.

• The mention activity:

b4ji =
H(T (ui) ∩M(uj) ∪ T (uj) ∩M(ui))∑

ue∈I(ui)

H(T (ui) ∩M(ue) ∪ T (ue) ∩M(ui))

B. Features �yi in Influence σi

Features in �yi aim to depict the influence of ui in

attracting the working colleagues. We develop the three

features. To keep the feature value in the range of [0, 1], we

transform the original values by function F (x) = 1− 1
x+1 .

Similarly, yli denotes the l-th entry in �yi, where p = 1, 2, 3.

• Number of followers: y1i = F (#{followers of ui}).
• Weighted sum of ui’s tweets, which are retweeted.

y2
i = F (

∑

t∈T (ui)

P (T1|t) ·Nrt(t)),

where Nrt(t) is the number of times that tweet t has

been retweeted.
• Weighted sum of ui’s tweets, which are commented.

y3
i = F (

∑

t∈T (ui)

P (T1|t) ·Ncm(t)),

where Ncm(t) is the number of times that tweet t has

been commented.
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C. Features �zi in Label Bias P 0
i

To feature P 0
i , we not only make use the users’ activities

on content about the given company, but also their emotion

to the given company. To detect emotion of a tweet, we

leverage emoticons used tweets. We divide the emoticons

into two groups, EP denotes the positive emoticons and EN

denotes the negative emoticons. We design 5 features on

label bias, zli denotes the l-th entry of �zi, l = 1, 2, 3, 4, 5.

• Tweets originally posted by ui: z
1
i = H(T (ui)−R̃(ui))

||T (ui)−R̃(ui)||
.

• Tweets retweeted by ui: z
2
i = H(R(ui))

||R(ui)|| .

• Tweets commented by ui: z
3
i = H(C(ui))

||C(ui)|| .

• Tweets posted by ui with positive emotion:

z4i =

∑
m∈T (ui)

P (T1|m) · ||E(m) ∩ EP ||
||T (ui)||

.

• Tweets posted by ui with negative emotion:

z5i =

∑
m∈T (ui)

P (T1|m) · ||E(m) ∩ EN ||
||T (ui)||

.

VI. EXPERIMENTAL EVALUATION

A. Data Sets

Our two data sets are crawled from the most popular

Chinese social network platform Sina Weibo. In this study

we focus on the users from two Chinese telecommunication

companies, namely “China Telecom” and “China Unicom”

(telecom and unicom for short respectively). Table II shows

the basic statistics of our two data sets. We denote PT as the

set of users who are verified as employees of the company,

and NT as the set of verified users who are not employees

of the given companies.
Table II

STATISTICS OF DATA SETS

data set #user #edge #tweet #comment #PT #NT
China Telecom (telecom) 14,477 1,201,766 12,254,684 10,001,546 1,909 1,550
China Unicom (unicom) 7,187 374,674 7,835,021 6,564,512 710 1,420

B. Evaluation Methodology

We select 1/T (T = 10) of the labeled users (1/T of PT
and 1/T of NT , denoted as UL

P and UL
N ) for training. Then,

the rest (T−1)/T labeled users ({PT−UL
P }∪{NT−UL

N})
are used for testing. We conduct 10-fold cross validation and

report the average results. η is set to 0.1 for SLP methods.
PRate@pct, NRate@pct. We rank the users in the de-

crease order by their predicted likelihood scores. Ideally,
the users in {PT − UL

P } should be ranked above the users
in {NT − UL

N}. Thus, after identifying the top pct% of
the users, denoted by Upct, we calculate PRate@pct and
NRate@pct. Given a pct, the bigger the PRate@pct, the
better the result. In contract, the smaller the NRate@pct,
the better the result.

PRate@pct =
||Upct ∩ {PT − UL

P }||
||{PT − UL

P }||
× 100%

NRate@pct =
||Upct ∩ {NT − UL

N}||
||{NT − UL

N}||
× 100%

AUC [8]. Given U+ and U− are the labeled positive set

and the negative set. Our AUC measure is defined as:

AUC(U+,U−) = 1

||U+|| · ||U−||
∑

i∈U+

∑

j∈U−
Π(Pi − Pj). (18)

Thus, the AUC of training is AUC(UL
P ,UL

N ), and the

AUC of testing is AUC({PT − UL
P }, {NT − UL

N}).
C. Baseline Methods
SVM. We use LIBSVM [9] with RBF kernel as our SVM

baseline, and use grid search for getting best parameter set-

tings. SVMnode and SVMnode+edge represent the methods

with node features only and all the features, respectively.
SLP (without influence). Remove the Influence variable

from the SLP model.
SLP (fix label bias). Pre-train the weights �γ with features

of Label Bias. Then fix it in the SLP learning process.

D. Experimental Result

Table III
AUC COMPARISON.

Learning Method
Dataset telecom Dataset unicom

TrainAUC TestAUC TrainAUC TestAUC

SLP 0.924059977 0.920894921 0.939314195 0.934514904
SLP (fixlabelbias) 0.917705642 0.915913631 0.935846346 0.932365089

SLP (withoutinfluence) 0.891770619 0.888195797 0.923021509 0.918269617
SVMnode 0.970846439 0.724359834 0.981655709 0.701526671

SVMnode+edge 0.99950764 0.775220596 1.0 0.749070532

Comparison of AUC. From Table III we can see that

the three SLP methods perform much better than the two

SVM methods on testing data while their performance is

not as good as that of SVM baselines on training data. This

indicates that the generalization ability of the SLP methods

is much better than that of SVM baselines in our problem.
By comparing SLP and SLP without influence, we can

see that the introduction of Influence variable improves the

AUC values by 3.68% on the dataset telecom and 1.77%
on the dataset unicom. Lastly, the comparison between SLP

and SLP with fixed label bias tells us that the co-training of

all the model parameters produces better results.
Comparison of PRate & NRate on the Test Data. We

use PRate as the x-axis, NRate as the y-axis, and plot the

PRate-NRate curve of each method on the two datasets.

For the same value of PRate, the lower PRate-NRate curve

corresponds to the smaller value of NRate, thus indicates the

better performance. As we can see in Figure 4, for both the

datasets the SLP method has the lowest PRate-NRate curve.
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Figure 4. Relation between PRate and NRate.

We set pct = {1, 5, 10, 20, 30, 40, 50} and calculate PRate

and NRate for each pct on both datasets, Tables IV and V

show the results. We can see that our SLP methods perform

best most of the time, the only exception occurs on metric

PRate in dataset telecom when pct = 1.
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Table IV
TOP RANK USERS ANALYSIS ON DATASET Telecom.

SLP SLP(fix label bias) SLP(without influence) SVMnode SVMnode+edge

pct NRate PRate NRate PRate NRate PRate NRate PRate NRate PRate
1 3.58E-04 0.011000276 0.001218638 0.013619914 5.02E-04 0.013678087 0.001146953 0.012338569 0.001935484 0.017171244
5 0.001146953 0.092477573 0.002078853 0.121237255 0.002293907 0.116344264 0.004516129 0.049299164 0.006666667 0.063500505
10 0.002867384 0.208878173 0.004874552 0.249578396 0.005734767 0.245385934 0.012473118 0.092255289 0.016200717 0.120657359
20 0.00953405 0.428212547 0.012759857 0.419948563 0.018853047 0.402077095 0.031182796 0.185969505 0.043225806 0.230139004
30 0.021218638 0.586701571 0.029892473 0.569474909 0.041863799 0.531116622 0.065304659 0.297436086 0.077562724 0.348879704
40 0.051326165 0.70660635 0.05734767 0.685530755 0.07562724 0.643393344 0.109605735 0.431073145 0.123727599 0.478905729
50 0.108100358 0.802287744 0.110250896 0.783370993 0.131971326 0.747166958 0.177060932 0.571574967 0.190681004 0.613291693

Table V
TOP RANKING USERS ANALYSIS ON DATASET Unicom.

SLP SLP(fix label bias) SLP(without influence) SVMnode SVMnode+edge

pct NRate PRate NRate PRate NRate PRate NRate PRate NRate PRate
1 1.58E-04 0.076212833 8.72E-04 0.072613459 6.34E-04 0.072300469 0.001981611 0.03943662 0.00245667 0.038497653
5 0.004200186 0.310328638 0.004279425 0.313771518 0.004120821 0.31799687 0.015454431 0.161189358 0.01482102 0.130672926
10 0.011808291 0.449608764 0.01323485 0.441940532 0.013789274 0.44084507 0.03851571 0.262754304 0.032969713 0.224100156
20 0.041845018 0.650391236 0.043429427 0.628169014 0.048422761 0.621126761 0.101916836 0.417370892 0.0863887 0.381533646
30 0.09454733 0.799530516 0.095497573 0.79029734 0.117927704 0.767918623 0.201458632 0.549608764 0.164059568 0.517683881
40 0.18671899 0.897026604 0.1897287 0.892175274 0.217865067 0.867762128 0.355765854 0.658841941 0.268602495 0.633176839
50 0.316849546 0.95086072 0.311934571 0.951486698 0.328342138 0.934741784 0.537014565 0.751330203 0.391055392 0.731455399

VII. RELATED WORK & CONCLUSION

Previous works on profiling social users mainly focus

on discovering user interests to provide personalized search

result [10], [11], news recommendation [12], targeted adver-

tisement [13], [14], inferring user home location [15], and

inferring college, major and so on [4]. Our work infers users’

affiliation in the context of social media.

This study is mainly inspired by the recent works on

graph-based learning[6], [16]. [6] proposes supervised ran-

dom walk to learn the edge weights for link prediction in

social network. [16] extends the model for tag recommenda-

tion with multi-type edges and nodes. Our study is different

from [6], [16]: 1) our problem is to predict the class label of

any node in the network while their problems are to predict

the similarity distance between two nodes; 2) the variable of

influence bias, which improve the prediction performance,

is newly introduced in our model. The modeling of node

influence here is different from the previous works on the

general social influence, it models the influence to attract

the working colleagues as her social friends.

In this paper, we formulate the problem of inferring users’

affiliation in the context of social media, and transform it as a

task of classifying nodes over graphs. Then, we propose the

supervised label propagation model to address this problem.

This model provides a uniform way to combine all the

features on the social activities. Experimental results show

that our model outperforms the compared baseline methods.

With identified employees, we will monitor their tacks on

certain business area in social media in the future work, and

show how these tracks help in business intelligence.
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